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Abstract. Relativistic quantum mechanics suffers from smtcttpl problems which are traced 
back lo the lack of a position operator i ,  satisfying [f. $1 = ihl with the ordinary momentum 
operator j, in the basic symmeuy g m u p t h e  P o h c d  group. In this lener we provide a finite- 
dimosional extension of Ihe P o i n d  group cont$dg on!y one more generator ? (in 1 + 1 
dimensions), satisfying the commutation relation lk. l i l  = % I  with the ordinary boost generator 
k. The unitary ineducible represeatations are calculated and the carrier space proves to be the set 
of Shapiro's wavefundons. The generalized equations of motion constitute a simple example 
of exactly solvable finite-difference set of equations associated with inlinite-order polarization 
equations. 

We begin with higher-order polarizations. One essential difference between geometric 
quantization [14] and a group approach to quantization (GAQ) [S ,  61 is the possibility 
of introducing in the latter higher-order polarizations made out of elements of the (left) 
enveloping algebra. These higher-order polarizations are especially suitable for those 
(anomalous) cases in which the symplectic phase space is not polarizable, i.e. there is 
no maximal (half the dimension of the manifold) isotropic dishibution of vector fields with 
respect to the symplectic form w. or wkere there. is no Lagrangian submanifold. 

The GAQ is formulated on agroup G which is a principal bundle with fibre U(1) and the 
symplectic form is replaced by dO, where 0 is the left I-form dual to the vertical generator. 
The analogous, anomalous problem on a group, corresponds to the absence of a first-order 
full polarization, i.e. a maximal left subalgebra containing the kernel of 0 and excluding 
the U(1) generator. It can be solved by adding operators in the left enveloping algebra to a 
non-full, first-order polarization, thus defining a higher-order polarization [6]. For instance 
the anomalous representations of the Virasoro group related to the non-K<iihlerian co-adjoint 
orbits have k e n  successfully worked out in this way [71. 

Higher-order polarizations have also proved to be useful for representing a physical 
system in a different (although equivalent) realization than those given by first-order, full 
polarizations. This is the case, for instance, for the configuration-space representation of the 
free particle and the harmonic oscillator (either relativistic or not) [S, 91 whose. first-order 
polarizations lead to momentum-space and Bargmann-Fock representations, respectively. 

* Work supported in part by the DGICYT 
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An interesting particular of the infinireorder polarization is the finitedifference character 

of the generalized equations of motion and physical operators, in some sense analogous to 
the differential realization of quantum group operators [lo, 111. It constitutes a system of 
infiniteorder differential operators closing a ‘weak’ algebra: in general the commutator of 
two operators only closes on the reduced space of wavefunctions. 

The general form of the solutions to the polarization equations, leading to the q-  
realization, can be written formally as 

where I represents the variables with non-dynamical character like time, rotations, etc, q 
the generalized coordinates and p their conjugated momenta. * ( q )  is an arbitrary function 
and constitutes the carrier space for the irreducible representation of the group. 6, is the set 
of operators generating transformations in the variables t (energy, angular momentum, etc) 
and 6p is a set of operators generating (no-local) transformations in p, all of them given 
in the q-realization. When the set of operators [bC, 6p] generates (under commutation) 
a subalgebra of the original Lie algebra the unitarity of the minimal realization in terms 
of only q and 6 is ensured, otherwise a further unitarization process is required, which 
consists of a non-canonical choice among algebraicaly equivalent higher-order polarizations, 
i.e. with the same commutation relations (‘symmetrization’ process). It must be stressed 
that the representation of the group on the complete wavefunction is nevertheless unitary. 
A general study of the integration of higher-order polarization will be published elsewhere. 

In the particular case of relativistic quantum Techanics, the p-realization (momentum 
space) is naturally unitary,-due to the fact that tot, generates an algebra isomorphic 
to the one generated by [If, j ] ,  which is a subalgebra of the Poincad algebra. However, 
the x-realization (configuration space) requires further unitarization since (6,, 6,) generate 
an infinite-dimensional algebra isomorphic to the one generated by [fi , i) ,  where 2 is the 
position operator (note that [i ,  fi] = i t  IJ i& - i& + .  . .). 

In this letter we elaborate on a finfe enlargement of the (1 t I)D Poincar6 group which 
contains a momentum operator % giving a canonical commutation relation with the boost 
operator L. An infinite-order polarization on a central extension of this group provides 
a unitary representation of the Poincar6 subgroup in a natural way, the support of which 
are the Shapiro’s wavefunctions. It constitutes an example of an exactly tractable physical 
system associated with finitedifference (generalized) equations of motion and an alternative 
way out to the problem of the position operator. 

We now turn to the momentum-space representation of the ( I  + I)D Poincar.5 group. 
Let us review very briefly (see IS] and references therein for more details) the standard 
momentum-space representation of the pseudo-extended ( I  + 1)D Poincark group on the basis 
of GAQ. Our starting point is the group law for the ordinary (non-extended) Poincark group 
P. It is easily derived from its action on the ( I  t I)D Minkowski spacetime parametrized by 
(a”)  (ao, u’ = a) :  a’” = A$(po, p)a” + X P ,  where ( x ” )  are the translations and A, the 
boosts, are parametrized by either p or 

-3  

,y sinb-] 5 sinh-’ ( y  :) E 2sinh-’ a. 
mc 

x is the hyperpolar co-ordinate parametrizing the (upper sheet of the) hyperboloid po2-p2 = 
m2c2, often referred to as the Lobachevsky space (see [IO] and references therein). In terms 
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of P 

P A = [  $ - m62 1.  
- 
mc + mc(p0 + mc) 

As a manifold, the group can be seen as the direct product of Minkowski spacetime and 
the mass hyperboloid. 

The consecutive action of two Poincad &ansformations leads to the composition law 

p,, - 01 PO' 0 - - x  + - - x  +--x 
mc mc 

x " = x ' +  --x + --x PO' PI 0 

mc mc 
0, 

P .  
PO = - + L 
mc mc. 

The Poincar6 group admits only trivial central extensions by V(1). i.e. extensions of 
the form 

g " = g ' * g  g E P  

c E V(1)  ~ 1 1  = fceiF'P'.8) 

where the cocycle : is a cobounrlnry generated by a function q on P, E(g' ,g)  = 
q(g' * g) - q(g')  - q(g). We choose q(g) = mcxO, so that the V(1) law to be added 
to (2) is 

(3) <" = <'< exp [imc(xo" - xo' - x")]  . 

From (2) and (3) we immediately derive both left- and right-invariant vector fields: 

O a p a p o ( p o - m c )  -L - P 

x -L- P a 

- L -  P 0 a 

a 2 L  - ic- E 8 
c -  a t  

a 

- a  
X F = - + p %  ax 

+--+ E - ~ C Q  mcax mc 

, m c a x  mcaxO mc 

m c a p  mc 

E P a + p ( p O - m c )  

(4) 
x - - - - + - x %  

2;o = Q 

(5) O a  . P a  x a 
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The pseudo-extended Poincari algebra becomes 

mc 

Note the appearance of the central generator in the thud commutator above, making the 
extension by U(1) not so trivial and justifying the name of pseudo-extension. 

The pseudwextended Poincar.6 group admits a first-order full polarization which is 
generated by &, 2;). The corresponding polarized U(l)-functions (W = i q )  are 
rl, = exp[-i(pO - mc)xO]@(p) and the right generators act on them as quantum operators 

I, 

In this identification of the quantum operator with right generators the rest mass energy 
has been added to the time generator to obtain the true energy operator $. Thii is a 
consequence of the fact that the pseudo-extension is nothing other than a redefinition of the 
U(1) parameter. We must realize that the boost operatori is not a true position operator, i.e. 
it is not i l  and does not generate ordinary translations in the spectrum of the momentum 
operator 5. 

We now turn to the S-Poincar.6 group in relativistic configuration space. The main 
problem we face in quantizing relativistic mechanics is the absence of a commutator 
"e I.?, @] = ii in the basic symmetry group, the Poincart group. where we only find 
[k, $1 = ijO/mc. As mentioned at the start of the letter, the position operator i belongs 
to the infinite-order shell of the Poincark algebra and does not close a finite-dimensional 
algebra with the rest of the generators. Furthermore, the operator @ does not generate 
translations on the spectrum of k  ̂ or, equivalently, the ordinary Minkowski variable x is not 
the spectrum of the operator i .  

The solution we propose in this letter is to keep i as basic operator and look for a new 
momentum operator 3 such that 

ap 

[i,?] = ii (8) 

where 3 now closes a finite-dimensional enlarged Poincard algebra: the S-Poincard algebra. 
The operator + generates true translations on the spectrum of k,  e .  The spectrum of I?. 

x F mcx,  is related to p through 

0 
-I p H = mcsinh-' = mccosh 

mc mc 
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The group law we propose for the S-Poincar.6 group is given by 

x O " = x 0 / + - ,  PO' 0 + - x  PI 

mc mc 

X" = x ' +  - x  + - x  PO' P' 0 

mc mc 
01 

P 
PO = - + 5 
mc mc 

K" = K' K 

1 <" = <'< exp [imc(xo" - xo' - x ' ) ]  exp mc 

The composition law for the new parameter K is just additive and does not modify the first 
three lines (all four lines constituting the group law for the non-extended S-Poincare group) 
since the associate operator ir commutes with the whole non-extended Poincarb algebra. 
We can think of K as parametrizing a Poincar&invariant space. Furthermore, the extended 
commutator (8) requires a non-trivial cocycle in the composition law for 5; it takes the 
standard form exp(iK'n). From th is  group law the left-invariant vector fields 

o a  p a  - L  - P 
' ~ 0 -  m c a x  +--+ 

o a P a P ( P O - ~ C )  - x - L -  ---+--+ p a 
m c a x  mcaxo  mc 

and the right-invariant ones 

. . a  I P  - - + mcsinh- - B xx - a K  mc 
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are easily derived. The commutators between (say) right generators are 

1 -  
mc 

The quantization 1-form, i.e. the U(1)-left-invariant canonical 1-form 

d p - ( p  0 - m c ) d x O + -  d4- 
IC 

n + K )  dn - mc (cosh & - 1 

provides the Noether invariants 

i-R @ = -(Po - m c )  
X P  

i -  o = g  
X? 

ig. 0 = mcsinh-' - = K. 
mc 

The integration measure, defined as the product of all left-invariant forms, is 

(15) 
mc 

S-2 -dX0 Adx Adp AdK = dxo A d r  A d z  AdK. 
PO 

The characteristic module of 0 (the Kernel of the Lie algebra cocycle) is & = 
&, 2: - 2;). and constitutes the generalized equation of motion. &, or at least a 
proper subalgebra, must be included in any polarization. 

We now present representations of the S-Poincar6 group. There are three equivalent 
polarizations which come out naturally 

They correspond to the realization of the unitary irreducible representation in momentum 
space, x-configuration space (ordinary configuration space) and K-configuration space, 
respectively. 
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We now present the realization of the Pj polarization in momentum space. The 
polarization equations (once 5 has been factorized out everywhere) give us the irreducible 
wavefunctions 

on which the right generators act as quantum operators 

I P  
me 

-d;Y = mcsinh- - Y 

x $'@ = po@ mccosh - 0 
mc 

Note that the boost operator ,$ can now be written as i&, i.e. it generates translations 

We now present the realization of the ?," polarization in x-configuration space. 
The polarization equations give the irreducible 

Z ~ Y  = o + Y = exp[-ixplexp [-imcK si& - ~ ( x o .  x ,  6) (22) 

in the specmm of 2,  turning ir into a 'good' momentum operator. 

We follow the same steps as before. 
wavefunctions 

-' mc 

%' @(X0.X,K)=exp[imc6sinh-' ("")I mc ax @(xo,x) 
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\Ir = exp[-ixp] exp [- imc~ sinh-' '1 exp [imcK sinh-' (--)] -i a 
mc mc ax 

The resulting quantum operators (restricted to ~ ( x ) )  are 

. a  
ax Ijq = -1- (0 

This realization (restricted to x and 6 )  is not unitary, even though the representation 
is unitary on the complete wavefunctions, because the i operator is not Hermitian. This 
problem is solved by using a proper (bigher-order) polarization on the Poincar.4 group [8]. 
The P:" polarization on the S-Poincare group provides an alternative solution. 

We now present the realization of the PF0 polarization in K-configuration space and the 
Shapiro wavefunctions. The polarization equations again give the irreducible wavefunctions 

X,Y -L = o j q =exp[-kpJcxp[-imc~sinh-' "1 ~ ( x o , x , K )  (27) 
mc 

2; t mcsinh (dc-L) -X, E ) q = O  =$ 
ax 

=$ @(x,  K )  = exp [imcx sinh ('">I mc a K  v ) (K)  

Y =exp[-ixp]exp[-imc~Sinh-'f--exp [-imcxo[cosh(-ia) mc a K  - 11) 

x exp [ imcx sinh (d")] P ( K )  . 
m C  a K  
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The quantum operators are 

jop = mccosh -- (i: :K) CO 

j p  = mc sinh (2 g) CO 

i q=Kp-xos inh  -- q + x c o s h ( z & )  (0 

As can be seen, this representation of the S-Poincar6 group, or more precisely the one 
which appears after dropping the xo and x 'evolution' from the i operator, is unitary and 
contains a unitary and irreducible representation of the Poincar6 subgroup. 

An analogous comment to that made under (21) also applies here; put the other way 
round the new parameter K allows i to be written as a multiplicative operator. 

The Shapiro wavefunctions are simply the eigenfunctions of the momentum operator j 
in K-configuration space, namely 
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