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Abstract. Relativistic quanturn mechanics suffers from structural problems which are traced
back to the lack of a position operator £, satisfying [¥, p] = in1 with the ordinary momentum
operator j, in the basic symsmetry group—the Poincaré group. In this letter we provide a finite-
dimensional extension of the Poincaré group containing onty one more generator # {in 1 + 1
dimensions), satisfying the commutation refation [£, 7] = it] with the ordinary boost generator
k. The unitary irreducible representations are calculated and the carrier space proves to be the set
of Shapiro’s wavefunctions. The generalized equations of motion constitute a simple example
of exactly solvable finite-difference set of equations associated with infinite-order polarization
equations.

‘We begin with higher-order polarizations. One essential difference between geometric
quantization [1—4] and 2 group approach to quantization (GAQ) [5, 6] is the possibility
of introducing in the latter higher-order polarizations made out of elements of the (left)
enveloping algebra. These higher-order polarizations are especially suitable for those
(anomalous) cases in which the symplectic phase space is not polarizable, i.e. there is
no maximal ¢half the dimension of the manifold) isotropic distribution of vector fields with
respect to the symplectic form w, or where there is no Lagrangian submanifold.

The GAQ is formulated on a group G which is a principal bundle with fibre U(1) and the
symplectic form is replaced by d®, where @ is the left 1-form dual to the vertical generator.
The analogous, anomalous problem on a group, corresponds to the absence of a first-order
full polarization, i.e. a maximal left subalgebra containing the kernel of © and excluding
the U{(1) generator. It can be solved by adding operators in the left enveloping algebra to a
non-full, first-order polarization, thus defining a higher-order pelarization [6]. For instance
the apomalous representations of the Virasoro group related to the non-Kihlerian co-adjoint
orbits have been successfully worked out in this way [7].

Higher-order polarizations have also proved to be useful for representing a physical
system in a different (although equivalent) realization than those given by first-order, full
polarizations. This is the case, for instance, for the configuration-space representation of the
free particle and the harmonic oscillator (either relativistic or not) [8, 9] whose first-order
polarizations lead to momentum-space and Bargmann—Fock representations, respectively.

* Work sapported in part by the DGICYT.
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An interesting particular of the infinite-order polarization is the finite~difference character
of the generalized equations of motion and physical operators, in some sense analogous 10
the differential realization of quantum group operators {10, 11]. It constitutes a system of
infinite-order differential operators closing a ‘weak’ algebra: in general the commutator of
two operators only closes on the reduced space of wavefunctions.

The general form of the solutions to the polarization equations, leading to the g-
realization, can be written formally as

W(t, p,q) ~ e g0y (g) )

where ¢ represents the variables with ron-dynamical character like time, rotations, etc, ¢
the generalized coordinates and p their conjugated momenta. ¥(g) is an arbitrary function
and constitutes the carrier space for the irreducible representation of the group. O is the set
of operators generating transformations in the variables ¢ (energy, angular momentum, etc)
and (3,, is a set of operators generating (no-local} transformations in p, all of them given
in the g-realization. When the set of operators (6, (5,,} generates (under commutation)
a subalgebra of the original Lie algebra the wvnitarity of the minimal realization in terms
of only ¢ and is ensured, otherwise a further unitarization process is required, which
consists of a non canomcal choice among algebraicaly equivalent higher-order polarizations,
i.e. with the same commutation relations (‘symmetrization’ process). It must be stressed
that the representation of the group on the complete wavefunction is nevertheless unitary.
A general study of the integration of higher-order polarization will be published elsewhere.

In the particular case of relativistic quantum mechanics, the p-realization (momentum
space) is naturally unitary, due to the fact that {0, 0;} generates an algebra isomorphic
to the one generated by {#, p}, which is a subaigebra of the Poincaré algebra. However,
the x-realization (configuration space) requires further unitarization since (O, 5 O,} generate
an infinite-dimensional algebra lSDmOI'phIC to the one generatcd by {H i}, where ¥ is the
position operator (note that [£, H] = lJE ~ 1-”— - 1—2,?; +.

In this letter we elaborate on a ﬁmte enlargemcnt of the (1 + 1)D Poincaré group which
contains a momentum operator # giving a canonical commutation relation with the boost
operator k. An infinite-order polarization on a central extension of this group provides
a unitary representation of the Poincaré subgroup in a natural way, the support of which
are the Shapiro’s wavefunctions. It constitutes an example of an exactly tractable physical
system associated with finite-difference (generalized) equations of motion and an alternative
way out to the problem of the position operator.

We now turn to the momentum-space representation of the (1 + 1)D Poincaré group.
Let us review very briefly (see [8] and references therein for more details) the standard
momentum-space representation of the pseudo-extended (1 + 1)D Poincaré group on the basis
of GAQ. Our starting point is the group law for the ordinary (non-extended) Poincaré group
P. 1t is easily derived from its action on the ¢1 + 1)D Minkowski spacetime parametrized by
[a#} = {a% a' = a}: o™ = A%(p°, p)a® + x¥, where {x#} are the translations and A, the
boosts, are parametrized by either p or

|4
x = sinh™ £ = sinh™! (yu-) = 2sinh™ .
me ¢

¥ is the hyperpolar co-ordinate parametrizing the (upper sheet of the) hyperboloid p%%—p? =
m2c2, often referred to as the Lobachevsky space (see [10] and references therein). In terms
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of p
il i
A | ™ me )
£ P
mc mc(p® + mc)

As a manifold, the group can be seen as the direct product of Minkowski spacetime and

the mass hyperboloid.
The consecutive action of two Poincaré transformations leads to the composition law

0r ’
xOﬂ=x0!+P_x0+Lx
mc mc
0! p’
=+ yy £y 2)
mc mc
o 0r
RN i
P=me?P T met”

The Poincaré group admits only trivial central extensions by U(1), i.e. extensions of
the form

g'=g'xg geP
=10 reu)
where the cocycle & is a coboundary generated by a function n on P, E(g',g) =
n(g’ * g) — n(g") — n(g). We choose n(g) = mex®, so that the U(l) law to be added
to (2) is
¢ = ¢t expime(x¥ —x¥ — x9)] . 3
From (2) and (3) we immediately derive both left- and right-invariant vector fields:
g2t pd pPO-md
mcdx®  meax me
] 0
}?.I; .P 3+_E____3_H+P(P mc)E
me dx  me dx? mc @

J?:: i{é%-EE

=2
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0 x? 0
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The pseudo-extended Poincaré algebra becomes

- - 1 =~
(%%, 58] = — 2 ©)
75 ]= Lz5_m

e me” %

Note the appearance of the central generator in the third commutator above, making the
extension by U(1) not so trivial and justifying the name of pseudo-extension,

The pseudo-extended Poincaré group admits a first-order full polarization which is
generated by (XL, XL}). The corresponding polarized U(1)-functions (EW = iW) are
¥ = exp[—i(p® — mc)x®]®(p) and the right generators act on them as quantum operators

P =iXR +meB)0 =p'v = o=,

pY=-iXfy=py = pO=p0d (7)

- o . 0
P = ifRY = P emitt-ma 3P = Fo= i_‘l_aji_
r me ap mc 3p

In this identification of the quantum operator with right generators the rest mass energy
has been added to the time generator to obtain the true energy operator p°. This is a
consequence of the fact that the pseudo-extension is nothing other than a redefinition of the
(1) parameter. We must realize that the boost operator k is not a true position operator, i.e.
it is not i% and does not generate ordinary translations in the spectrum of the momentum
operator .

We now turn to the S-Poincaré group in relativistic configuration space. The main
problem we face in quantizing relativistic mechanics is the absence of a commutator
like [%, ] = il in the basic symmetry group, the Poincaré group, where we only find
(k, p] = ip°/me. As mentioned at the start of the letter, the position operator £ belongs
to the infinite-order shell of the Poincaré algebra and does not close a finite-dimensional
algebra with the rest of the generators. Furthermore, the operator 5 does not generate
translations on the spectrum of & or, equivalently, the ordinary Minkowski variable x is not
the spectrum of the operator k.

The solution we propose in this letter is to keep k as basic operator and look for a new
momentum operator 7 such that

[k, #] =il (8)

where f# now closes a finite-dimensional enlarged Poincaré algebra: the S-Poincaré algebra.
The operator % generates true translations on the spectrum of %, x. The spectrum of 7,
n = mcy, 15 related to p through

0
7 = mcsinh™! Lo me cosh™! f__
ne
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The group law we propose for the S-Poincaré group is given by

s s
g0 P 0 P
me me

c me
B ®
me me
«"=x"4+«

[ : Or _ O+ 0 : !t -]i
¢ = 'z exp[ime(x® = x¥ — x%) ] exp [tmc:c sinh mc]

The composition law for the new parameter « s just additive and does not medify the first
three lines (all four lines constitating the group law for the non-extended S-Poincaré group)
since the associate operator # commutes with the whole non-extended Poincaré algebra.
We can think of ¥ as parametrizing a Poincaré-invariant space. Furthermore, the extended
commutator (8) requires a non-trivial cocycle in the composition law for ¢; it takes the
standard form exp(ix’w). From this group law the left-invariant vector fields

0 07,0
RN N L
X‘u_mcax°+mcax+ mec =
g Pl p 3 polomg

' mcdx  mecax® mc
. (4] 8 (1]
X};:‘D———+(x+*°—x)z (10)
me ap mc
- ]
Xt=—=
S 7"
- 2
L =
X; —lgﬁ_u

and the right-invariant ones

" 3
R
X0 = 550
e @
Re —4pE
X; 8x+P
. ¢ 3 ¢ 3 a 0
oo AR A Y o A = (11)
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dx me
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are easily derived. The commutators between (say} right generators are

- - 1 SR
(% 5] = X
5,180
x0r R | —
1 (12)
(X5 %5] = oAb -2
[%3, %] =0
(%8, 28] = -2
The quantization 1-form, i.e. the I/ (1)-left-invariant canonical 1-form
d
@=-(x+m—;x)dp—(po—mc)dx°+ <
P 4
=—(xcosh-n—+x)dn—mc(cosh—n——l)dxo-l-d—; < (13)
- me me i
provides the Noether invariants
i © = —(p® — me)
0 (14)
,iR@):_.P_x.;._"f_xO_,{ =-K
me me
ig2© = mcsinh™! L =n.
¥ me
The integration measure, defined as the product of all left-invariant forms, is
Q—-;-dxol\dx/\dp/\dfc—dxo/\dx/\djrf\dx (15)

The characteristic module of @ (the Kernel of the Lie algebra cocycle) is Go =
(Xxn, XL} and constitutes the generalized equation of motion. Gg, or at least a
proper subalgebra must be included in any polarization.

We now present representations of the S-Poincaré group. There are three equivalent
polarizations which come out naturally

Ph = (R, 2o — XL, B+ R~ (R0, 2L R (16)

PO = (5(;, + [,/mzcz — (Xt - mc] E, XL + mcsinh™! (#x};) g, 52;;) (17
HO i Y= = vl : i vLl o gL

P, (X + me [cosh (m_cx") - 1] E,X; + mecsinh (%XK) ...,XP) . (18)

They correspond to the realization of the unitary irreducible representation in momentum
space, x-configuration space (ordinary configuration space) and «-configuration space,
respectively.
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We now present the realization of the ‘P; polarization in momentum space. The
polarization equations (once { has been factorized out everywhere) give us the irreducible
wavefunctions

il;o‘p = 0
Xtw=0 = W =exp[—i(p" — mc)x"1®(p) (19)
Xp =0

on which the right generators act as quantum operators
iX5w = (p° — moyw
—iXRw = py

- 0 ad t 20
iX:}'I-' = ip— exp[—i(p? — mc)x®)] — (20)
me dp

—iZRW = mesinh™! £ @
me

[ A

0 0 k4
P =p'P= cosh — ¢
P p mc cosh ~

PO =pd= me sinh — &
me

. "0 a0 @1
kP=1— —=i—v0
mc ap am

FO=mesiph”’ L d=rno.
me

Note that the boost operator & can now be written as ié"’;, i.e. it generates translations
in the spectrum of #, turning # into a ‘good’ momentum operator.

We now present the realization of the Pfo polarization in x-configuration space.
We follow the same steps as before. The polarization equations give the irreducible

wavefunctions

Xtw=0 = ¥=exp[—ixplexp [—imcac sinh™! mic] @(x% x, k) (22)

{)?,';-i—mcsinh'l (—l—-}?";) E} ¥=0 = —ig—? = mcsinh™! (;l—‘l) @
mc ok me 3x

= O x, k) =exp [imcx sinh™! (;l- i)] o (x%, x) 23
me ax

- = _ . 9¢ 3
{Xi'a + [\/m2c2 — (XL)? _mc] c.] V=0 = lm — ’: m2c? — 3F —mc:, &

= ¢ x)=exp l—ixu [ m2c2 — % —mc}} e(x) (24)
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_ _: s -] i] . sy :i
¥ = expf u:p]exp[ imex sinh pops exp l:lmcxsmh (mc e

32
X exp {-—imr:.vc0 [ m2¢? ~ Py mc:” wlx). (25)

The resulting quantum operators (restricted to @(x)] are

20 L a2 a
pe= \fmc *ﬁ?’

—— la

ke = i\/m2c2—3—2+x+ixo—9— 0
$= me Ax2 mec 9x g

20 = mesinh=! [ —L 2
@ = mcsinh (mcax) Q.

This realization (restricted to x and 5‘}) is not unitary, even though the representation
is unitary on the complete wavefunctions, because the & operator is not Hermitian, This
problem is solved by using a proper (higher-order) polarization on the Poincaré group [8].
The PHO polarization on the S-Poincaré group provides an alternative solution.

We now present the realization of the P1© polarization in «-configuration space and the
Shapiro wavefunctions. The polarization equations again give the irreducible wavefunctions

XLQJ 0 = @-exp[—-nxp]cxp[-—mcxsmh" :}d)(.x x.Kk) (2N

1 - - L —-i 3
[Xxu -+ mc [cosh (EX’I’-) - ]] c::.l =0 = lé—x—ﬂ =mc [cosh (%5—‘;) - 1:| &

=2 % x x) = exp {-—imcxo [cosh (;—;«%) - l:” dlx, k) (28)

. i io. ) -
[X,% + mcsinh (Lx,';) :} W=0 = <i2® —mesinh (—’--3_) ¢
me dx

me ok

= @lx, k) =exp [zmcx sinh (-—-‘-i)] @k} (29)
mc 9

¥ = exp[—ixp]exp [—imcrc sinh~! 2 ]exp { imex® [cosh (;!-ai) - 1:“

mc ok

X exp [mzcx sinh (:n_:- a—a-)} (k). {30)
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The quantum operators are

%0 = mecosh (—_—l—a—) @
me dx

pe = mcsinh :l-i
P = me dx v

N —i 8 —-i 3
kyp = —x%si —_— —
P=KQp—X smh(mcax)w-i-xcosh(mcax) ol

@1

Ay =—i—p.
4 ax@

As can be seen, this representation of the 8-Poincaré group, or more precisely the one
which appears after dropping the x° and x ‘evolution’ from the k operator, is unitary and
contains a unitary and irreducible representation of the Poincaré subgroup.

An analogous comment to that made under (21) also applies here; put the other way
round the new parameter « allows k to be written as a multiplicative operator.

The Shapiro wavefunctions are simply the eigenfunctions of the momentum operator p
in «-configuration space, namely

. ) —-i @
Pop(k) = pgp{k)} = mcsinh (EE 5;) ©p = PP,

o _ —imex
=  ¢p{k) =exp [imcx sinh™! %] = explikn] = (P — p) . (32)
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